Ligand-induced activation of ERK1/2 signaling by constitutively active Gs-coupled 5-HT receptors Abstract5-HT4R, 5-HT6R, and 5-HT7AR are three constitutively active Gs-coupled 5-HT receptors that have key roles in brain development, learning, memory, cognition, and other physiological processes in the central nervous system. In addition to Gs signaling cascade mediated by these three 5-HT receptors, the ERK1/2 signaling which is dependent on cyclic adenosine monophosphate (cAMP) production and protein kinase A (PKA) activation downstream of Gs signaling has also been widely studied. In this study, we investigated these two signaling pathways originating from the three Gs-coupled 5-HT receptors in AD293 cells. We found that the phosphorylation and activation of ERK1/2 are ligand-induced, in contrast to the constitutively active Gs signaling. This indicates that Gs signaling alone is not sufficient for ERK1/2 activation in these three 5-HT receptors. In addition to Gs, we found that 尾-arrestin and Fyn are essential for the activation of ERK1/2. Together, these results put forth a novel mechanism for ERK1/2 activation involving the cooperative action of Gs, 尾-arrestin, and Fyn. IntroductionG protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors in humans. In response to extracellular stimuli, GPCRs undergo conformational changes to recruit multiple intracellular effectors, which mediate a complex network of transmembrane signal transduction. Because of their multifaceted involvement in human physiological activities, the complexity of GPCR signaling pathways challenges not only our basic understanding of GPCRs but also the development of drugs targeting these receptors. In addition to canonical heterotrimeric G protein signaling pathways, G protein-independent signaling cascades relying on arrestins and other effectors modulate GPCR signaling transduction [1,2,3]. Distinct extracellular ligands may induce biased conformations that trigger preferred downstream signaling pathways, thus producing distinct physiological outcomes [4].The extracellular signal-regulated kinase (ERK) family, including ERK1 and ERK2 (ERK1/2), are cellular effectors activated by GPCRs. GPCR-enabled activation of ERK1/2 is mediated by the activation of G proteins, 尾-arrestins, Src-family kinases, or receptor tyrosine kinases [5,6,7]. After sequential phosphorylation of the three-kinase signaling complex Raf/MEK/ERK, activated ERK1/2 kinases dissociate from the complex and then phosphorylate ~200 downstream effectors [8], thereby regulating a vast number of cellular functions, including growth, proliferation, differentiation, migration, survival, and apoptosis [9].Many GPCRs can activate ERK1/2 through both G proteins and 尾-arrestins, while some GPCRs can activate ERK1/2 through only one of the two pathways. The G proteins involved in ERK1/2 activation cascades include G伪s, G伪i, G伪q, and G尾纬 [10,11,12,13,14,15]. 尾-arrestin1 and 尾-arrestin2 share highly conserved sequences but have different effects on ERK1/2 activation depending on the GPCR. For example, the activation of ERK1/2 by angiotensin II receptor type 1a (AT1AR) decreased markedly following siRNA-mediated knockdown of 尾-arrestin2, whereas knockdown of 尾-arrestin1 resulted in an unexpected increase in ERK1/2 activation [16].It is difficult to define the roles of G proteins and 尾-arrestins, even in the context of the same receptor. The angiotensin II receptor and 尾-adrenergic receptor mutants, AT1ARAAY and 尾2ARTYY, lost the ability to couple to G proteins but retained the capacity to activate ERK1/2, implying that these two receptors exhibit a G protein-independent but 尾-arrestin-dependent mechanism of ERK1/2 activation [17, 18]. In contrast, a very recent study revealed that 尾2AR and AT1AR failed to activate ERK1/2 when G proteins were depleted by CRISPR-Cas9 technology, whereas the depletion of 尾-arrestin did not impact ERK1/2 signaling [19].The Src family of kinases consists of nine nonreceptor tyrosine kinases, among which Src, Fyn, and Yes are ubiquitously expressed [20]. Src-family members extensively participate in the upregulation of the GPCR-mediated ERK1/2 cascade. They are either recruited to GPCRs together with 尾-arrestin as a consequence of its interaction with 尾-arrestin or activated by effectors downstream of the G protein cascades. Activated Src kinases are involved in GPCR-mediated transactivation of receptor tyrosine kinases, such as the epidermal growth factor receptor (EGFR), which leads to activation of the ERK1/2 pathway [21,22,23].5-HT4R, 5-HT6R, and 5-HT7AR are three constitutively active Gs-coupled 5-HT receptors that activate the production of cyclic adenosine monophosphate (cAMP) and the protein kinase A (PKA) pathway even in the absence of an agonist [24,25,26,27]. The ERK1/2 signaling cascade is a crucial pathway for physiological functions modulated by 5-HT4R, 5-HT6R, and 5-HT7AR. In neurons, where 5-HT receptors mainly operate, the activation of ERK1/2 is involved in cell morphological changes associated with neuroplasticity, such as the formation of synapses or dendritic spine maturation, thus contributing to learning, memory, cognition, and other neural activities [28]. ERK1/2 activation elicited by 5-HT receptors is dependent on PKA activation and Ras phosphorylation that lies downstream of Gs protein signaling [29, 30] and the activation of Src-family kinases. The SH3 domain of Fyn contacts the C-terminal region of 5-HT6R and is responsible for ERK1/2 phosphorylation [30]. Treatment with PP2, a potent inhibitor of Src kinases, also resulted in the elimination of ERK1/2 signaling through 5-HT4R [31].Here, we investigated Gs signaling and ERK1/2 activation originating from 5-HT4R, 5-HT6R, and 5-HT7AR. Intriguingly, Gs signaling is constitutively active regardless of the presence or absence of an agonist, while the activation of ERK1/2 is ligand-induced. Since Gs signaling has been previously reported to be responsible for ERK1/2 phosphorylation, we reasoned that the Gs protein is necessary but not sufficient to initiate ERK1/2 signaling. Therefore, it is of special interest to investigate other signaling cascades required to elicit 5-HT receptor-mediated ERK1/2 signaling in response to an agonist.Materials and methodsCell cultureAD293 cells, a derivative line of HEK293 from Invitrogen, were cultured in Dulbecco鈥檚 modified Eagle鈥檚 medium (DMEM) (Life Technologies) supplemented with 10% (v/v) fetal bovine serum (FBS) (Life Technologies) in a humidified chamber supplied with 5% CO2 at 37鈥壜癈.SRE/CRE-Luc reporter assayAD293 cells were plated at a density of 5鈥壝椻€?04 cells per well in a 24-well plate 24鈥塰 before transfection. A total of 50鈥塶g of pcDNA6 plasmid encoding 5-HT4R, 5-HT6R, or 5-HT7AR was cotransfected with 200鈥塶g of SRE-firefly luciferase reporter (SRE-Luc) or CRE-firefly luciferase reporter (CRE-Luc) and 10鈥塶g of phRG-tk Renilla luciferase into AD293 cells using Lipofectamine 2000 reagent (Invitrogen) at a ratio of 2:1 (2鈥壩糒 reagent:1鈥壩糶 DNA). After 5鈥塰, the culture medium was replaced with DMEM containing 1% dialyzed FBS. Approximately 24鈥塰 later, the cells were treated with compounds as required by each experiment. Firefly and Renilla luciferase activities were determined using Dual-Glo luciferase assay kits (Promega) according to the manufacturer鈥檚 instructions after 5 and 7鈥塰 drug stimulations for CRE and SRE, respectively. Renilla luciferase was used as an internal transfection control in the Dual-Luciferase reporter assay system. The firefly luciferase activity (FLA) of each sample was normalized to the corresponding Renilla luciferase activity (RLA) to compensate for differences in transfection efficiency, using the following formula: relative luciferase unit (RLU)鈥?鈥塅LA/RLA.NanoBiT protein鈥損rotein interaction (PPI) assaysThe day before transfection, AD293 cells were plated at a density of 1鈥壝椻€?04 cells per well in a white, 96-well tissue culture plate in DMEM containing 1% dialyzed FBS. AD293 cells were transfected with 50鈥塶g of plasmid encoding LgBiT and SmBiT and their fusion partners using FuGENE HD reagent (Promega) at a ratio of 3:1 (3鈥壩糒 reagent:1鈥壩糶 DNA). Approximately 24鈥塰 later, the culture medium was replaced with 100鈥壜礚 of Opti-MEM I Reduced Serum Medium (Life Technologies). The NanoBiT PPI luminescence measurement was performed using the Nano-Glo Live Cell Assay System (Promega) according to the manufacturer鈥檚 instructions. The luminescence measurement upon drug stimulation was taken after measuring the baseline luminescence.Small interfering RNA (siRNA) transfectionAll siRNAs were synthesized by GenePharma Corporation, with sequences specifically targeting 尾-arrestin1/2, G伪s, G伪i2, G伪q, ERK1/2, Src, and Fyn (Supplementary Table聽1).AD293 cells were seeded in 6-well plates the day before transfection. When cells were 85% confluent, the siRNA transfection was performed by mixing 2鈥壜礚 of 20鈥壜礛 siRNA and 7.5鈥壜礚 of Lipofectamine RNAiMAX (Invitrogen) in 250鈥壜礚 of Opti-MEM I Reduced Serum Medium per the manufacturer鈥檚 instructions. 8鈥塰 after siRNA transfection, the cells in each well were dissociated using trypsin and either replated onto 24-well plates for further plasmid transfection and the SRE-Luc assay as described above or replated onto 6-well plates for real-time quantitative reverse transcription PCR (RT-qPCR) and western blotting.RNA isolation and RT-qPCRTotal cellular RNA was isolated using the RNApure Total RNA Fast Isolation Kit (BioTeke Corporation) 48鈥塰 after siRNA transfection and was reverse-transcribed into cDNA using the Transcriptor First Strand cDNA Synthesis Kit (Roche) according to the manufacturer鈥檚 instructions.mRNA abundances were measured by quantitative PCR using LightCycler 480 SYBR Green I Master Mix (Roche) on a Roche LightCycler 480 Instrument II. Relative quantities of the targeted gene transcripts were calculated using the 螖螖Ct method with GAPDH as a reference. Specific primer sequences were used to amplify the target genes (Supplementary Table聽2).Western blottingTo determine the level of phosphorylated ERK1/2 (phospho-ERK1/2) by western blotting, AD293 cells were plated onto 6-well plates and transfected 24鈥塰 later with pcDNA6 vectors encoding 5-HT receptors. 5鈥塰 after transfection, the culture medium was changed to serum-free DMEM, and the cells were further incubated for 20鈥塰. Then, the cells were treated with 5-HT聽(TargetMol) or vehicle for 5鈥塵in and lysed with 1鈥壝椻€壩?mercaptoethanol loading buffer. Equal amounts of protein were immunoblotted with anti-ERK1/2 (1:1000 dilution; Abcam) or anti-phospho-ERK1/2 (1:1000 dilution; Cell Signaling Technology). A horseradish peroxidase (HRP)-conjugated anti-rabbit antibody was used as the secondary antibody.Statistical analysisAll quantitative data were analyzed using GraphPad Prism (version 5, GraphPad Software Inc). The results represent at least three independent experiments, and all the analyzed values are presented as the mean鈥壜扁€塻tandard error of the mean (SEM). The statistical significance of all data was determined using Student鈥檚 t tests.ResultsSRE-Luc signal as an indicator of ERK1/2 phosphorylationThe serum response element (SRE) is a regulatory element that is upregulated upon activation of the ERK1/2 pathway [32, 33]. Indeed, the SRE-Luc reporter system has been used to detect ERK1/2 activation in Gi signaling [33, 34]. However, its application to ERK1/2 activation by diverse GPCR signaling remains to be confirmed. To verify the relationship between the SRE signal and ERK1/2 phosphorylation and to confirm the feasibility of the SRE-Luc reporter to monitor phosphorylated ERK1/2, the SRE-Luc activity and phospho-ERK1/2 level were measured concurrently in AD293 cells overexpressing 5-HT receptors. The data revealed that SRE-Luc activity was considerably increased in response to stimulation with 1鈥壩糓 5-HT in cells overexpressing 5-HT4R, 5-HT6R, or 5-HT7AR (38.31鈥壜扁€?.746, 49.90鈥壜扁€?.369, and 25.06鈥壜扁€?.270-fold increases, respectively, compared with vehicle treatment). Correspondingly, western blot analysis revealed that ERK1/2 phosphorylation was upregulated upon stimulation with 1鈥壩糓 5-HT, indicating a similar trend observed for SRE-Luc activity (Fig.聽1a). Moreover, upon gene silencing of ERK1, ERK2, or both by siRNA (Fig.聽1b), the SRE-Luc signal showed a substantial decrease compared with the negative control (NC) (Fig.聽1c). Together, these results indicated that ERK1/2 is upstream of the SRE-Luc signal, and thus, the SRE-Luc readout can be used to monitor ERK1/2 activation by GPCRs.Fig. 1SRE-Luc signal is an indicator of ERK1/2 phosphorylation. a AD293 cells expressing the indicated 5-HT receptor were serum-starved for 20鈥塰, followed by incubation with 1鈥壩糓 5-HT or vehicle before the SRE-Luc assay. The fold change of SRE-Luc induction鈥?鈥塕LU (5-HT)/RLU (vehicle), where RLU (5-HT) and RLU (vehicle) are the relative luciferase units induced after 5-HT and vehicle treatment, respectively. For phospho-ERK1/2 western blotting, cells overexpressing the indicated receptor were serum-starved and incubated with 1鈥壩糓 5-HT or vehicle for 5鈥塵in before sample collection. b The efficiency of the siRNA-mediated knockdown of ERK1, ERK2, or combined ERK1/2 was validated by RT-qPCR and western blotting 48 and 60鈥塰 after siRNA transfection, respectively. c The SRE-Luc assay was conducted in cells with ERK1, ERK2, or combined ERK1/2 silenced by siRNA transfection. Cells were stimulated by 1鈥壩糓 5-HT in SRE-Luc activity assays. NC represents the signal from cells transfected with negative control siRNA. Cells treated with vehicle defined the background signal (data not shown). The RLU value was determined as described in the Materials and methods section. *P鈥?lt;鈥?.05, **P鈥?lt;鈥?.01, and ***P鈥?lt;鈥?.001 compared with the control. Error bars represent the SEM of three independent experiments performed in triplicateFull size imageStimulation of ERK1/2 by 5-HT4R, 5-HT6R and 5-HT7R peaks at 5鈥塵in after stimulation, then gradually diminishes to basal levels, and does not follow the classical activation pattern with an early acute phase and a late weaker but sustained phase [29, 30]. Our results demonstrated that the late phases of ERK1/2 activation are absent for these three 5-HT receptors (Supplementary Figure聽1). Consequently, the SRE-Luc assay reflected the early phase of ERK1/2 activation.5-HT4R, 5-HT6R, and 5-HT7AR show constitutive Gs-coupled activity but ligand-induced ERK1/2 activationThe CRE-Luc reporter system has been routinely applied to monitor cAMP content in response to the activation of Gs-coupled GPCRs [35,36,37,38,39,40,41]. To investigate the relationship between receptor activation and downstream Gs and ERK1/2 signaling cascades, we generated dose鈥搑esponse curves for Gs signaling and ERK1/2 activation elicited by 5-HT4R, 5-HT6R, and 5-HT7AR using the CRE-Luc and SRE-Luc reporter systems, respectively.For all three tested 5-HT receptors, the CRE-Luc signal maintained a constant level regardless of 5-HT concentration (Fig.聽2a). This result indicated constitutive Gs-coupled activity for 5-HT4R, 5-HT6R, and 5-HT7AR, in agreement with previous reports [24,25,26,27]. Unexpectedly, the SRE-Luc signals for all tested 5-HT receptors increased in a dose-dependent manner with varying concentrations of 5-HT (Fig.聽2b), suggesting ligand-induced SRE activity for these three 5-HT receptors.Fig. 2Profiling of 5-HT receptor-mediated Gs signaling and ERK1/2 activation in response to the agonist and antagonist. a Gs signaling of the indicated 5-HT receptor was determined by a CRE-Luc activity assay after incubation with 5-HT at varying concentrations. The fold change of CRE-Luc induction鈥?鈥塕LU of the treatment group/RLU of control cells without 5-HT receptor expression, where RLU is relative luciferase units. b ERK1/2 signaling mediated by the indicated 5-HT receptor was determined by SRE-Luc activity in response to incubation with varying concentrations of 5-HT. The fold change of SRE-Luc induction鈥?鈥塕LU (5-HT)/RLU (vehicle). c ERK1/2 signaling mediated by 5-HT6R in response to ERG stimulation was measured by SRE-Luc activity. d, e Cells for the CRE-Luc assay (d) or SRE-Luc assay (e) for 5-HT6R were treated with the antagonists SB271046 or methiothepin at varying concentrations in the presence of 1鈥壩糓 5-HT. The RLU value induced by 1鈥壩糓 5-HT was set as the control. RLU values were determined as described in the Materials and methods section. Error bars represent the SEM of three independent experiments performed in triplicateFull size imageThen, 5-HT6R was chosen as the representative receptor for further studies. The dose-dependent enhancement of SRE activity was also observed when 5-HT6R was stimulated with ERG, an exogenous ligand for 5-HT receptors (Fig.聽2c). To determine whether the constitutive CRE-Luc signal and agonist-dependent SRE-Luc signal were related to the conformational changes in the 5-HT receptors, we employed two antagonists of 5-HT6R, SB271046 and methiothepin (MT). We detected only a slight decrease in the CRE-Luc signal upon treatment with 1鈥壩糓 SB271046 or MT (a sharp decrease in the CRE-Luc signal was observed at a concentration of 10鈥壩糓 SB271046 or MT (Fig.聽2d), which could be due to cell death triggered by the higher concentration of antagonist). In contrast, SB271046 and MT considerably inhibited the SRE-Luc signal in a 5-HT dose-dependent manner. Just 1鈥壩糓 SB271046 or MT was sufficient to completely inhibit the SRE-Luc activity induced by 1鈥壩糓 5-HT (Fig.聽2e). The difference between the CRE-Luc and SRE-Luc data can be explained by the conformational transitions of the 5-HT receptors. When the receptors were ligand-free, they remained in a 鈥淕 protein-biased鈥?conformation and preferentially activated Gs signaling rather than other cascades. Upon agonist stimulation, the receptors underwent subtle conformational changes that allowed them to trigger other signaling pathways (in addition to Gs signaling) that are responsible for ERK1/2 activation. The antagonists (SB271046 and MT) competed with the agonist for the binding site on the receptors, thus leading to the inhibition of the agonist-induced SRE-Luc signal. However, the antagonists were incapable of negatively regulating the Gs activation of ligand-free receptors and thus had little effect on CRE-Luc activity.The Gs signaling cascade originating from 5-HT4R, 5-HT6R, and 5-HT7AR was previously reported to be responsible for the activation of ERK1/2 [42, 43], but we showed that Gs signaling elicited by ligand-free 5-HT receptors was not sufficient to activate ERK1/2 signaling. This result implied that other signaling pathways, in addition to Gs signaling, are essential for ERK1/2 activation in our assay systems.Gs-coupled signaling, rather than other G protein-coupled signaling, is essential for 5-HT receptor-mediated ERK1/2 activationSince Gs signaling mediated by ligand-free receptors was incapable of ERK1/2 activation, it was necessary to further investigate the role of the Gs signaling pathway in ERK1/2 phosphorylation. When G伪s was silenced by siRNAs (Fig.聽3a), the SRE-Luc signal decreased substantially. This result suggested a critical role of the Gs pathway in ERK1/2 activation (Fig.聽3b). The importance of Gs signaling was further confirmed by treatment with H89 (5鈥壩糓) or PD98059 (5鈥壩糓), a selective PKA inhibitor and MEK inhibitor, respectively. Both inhibitors blocked the activation of ERK1/2 induced by 1鈥壩糓 5-HT (Fig.聽3c, d). In addition, we used forskolin, which rapidly activates adenylyl cyclase, to investigate whether direct upregulation of cAMP is sufficient to initiate the ERK1/2 signaling cascade. Cells treated with 1鈥壩糓 forskolin showed no considerable difference in ERK1/2 activation compared with those treated with vehicle. In addition, forskolin treatment resulted in a slight decrease in ERK1/2 phosphorylation induced by 5-HT (1鈥壩糓) (Fig.聽3e). The observation could possibly be attributed to the negative regulation of PKA on the phosphorylation of ERK1/2, since PKA was reported as a double-edged regulator of ERK1/2 phosphorylation. Contrary to the canonical positive regulation effect, PKA also negatively regulates the phosphorylation of ERK1/2 by inhibiting the activation of Raf1 through phosphorylation of its S43, S259, and S621 residues [44]. Together, these results implied that Gs signaling is necessary but not sufficient for the activation of the ERK1/2 signaling pathway originating from 5-HT4R, 5-HT6R, and 5-HT7AR.Fig. 3Involvement of the Gs signaling pathway in 5-HT receptor-mediated ERK1/2 phosphorylation. a siRNA-mediated knockdown of G伪s was validated by RT-qPCR 48鈥塰 after transfection. b SRE-Luc activity was measured in cells transfected with G伪s-specific siRNA and stimulated by 1鈥壩糓 5-HT. NC represents the signal from cells transfected with negative control siRNA. c Cells were treated with 1鈥壩糓 5-HT in combination with 5鈥壩糓 H89 to block PKA activity, and the resulting suppression of ERK1/2 activation was measured. The RLU value induced by 1鈥壩糓 5-HT was set as the control. The phosphorylation level of ERK1/2 upon H89 treatment was measured by western blotting. d Cells were treated with 1鈥壩糓 5-HT in combination with 5鈥壩糓 PD98059 to block MEK activity, and the suppression of ERK1/2 activation was investigated. The RLU value induced by 1鈥壩糓 5-HT was set as the control. e Cells were treated with 10鈥壩糓 forskolin in combination with 1鈥壩糓 5-HT to explore whether upregulation of intracellular cAMP is sufficient to activate ERK1/2. The RLU value induced by 1鈥壩糓 5-HT was set as the control. *P鈥?lt;鈥?.05, **P鈥?lt;鈥?.01, and ***P鈥?lt;鈥?.001 compared with the control. Error bars represent the SEM of three independent experiments performed in triplicateFull size imageIn addition to Gs signaling, the G伪i, G伪q, and G尾纬 subunits are involved in ERK1/2 activation [10,11,12,13,14,15]. Therefore, we investigated their contribution to 5-HT receptor-mediated activation of ERK1/2 using an siRNA-mediated knockdown approach. G伪i2, G伪q, G尾1, G尾2, and G尾4 are the most abundant isoforms of these subunits in AD293 cells according to mRNA levels determined by RT-qPCR (Supplementary Table聽3). Knockdown of G伪i2 or G伪q (validated by RT-qPCR, Supplementary Figure聽1A and D) in the tested 5-HT receptors had no impact on ERK1/2 activation, negating their role in ERK1/2 signaling (Supplementary Figure聽1B and E). Furthermore, inhibition of Gi signaling with pertussis toxin (PTX) (20, 200, or 400鈥塶g/mL) did not affect ERK signaling, supporting the irrelevance of the Gi signaling cascade on the ERK1/2 pathway through these 5-HT receptors (Supplementary Figure聽1C).Our data also revealed that knockdown of G尾1, G尾2, or G尾4 (validated by RT-qPCR, Supplementary Figure聽2a, 2c, and 2e) led to a considerable inhibition of ERK1/2 phosphorylation (Supplementary Figure聽2b, 2d, and 2f). A deficiency of G尾纬 subunits, which are constituent parts of the G protein heterotrimer, leads to the collapse of the G protein cycle. Thus, the contributions of G尾纬 subunits could not be distinguished from those of G伪s. To directly clarify the role of G尾纬 subunits, the carboxyl terminus of 尾ARK-1 (G595-L689), a known sequester of G尾纬 subunits [45, 46], was overexpressed. Varied amounts of 尾ARK-1 (G595-L689) had no impact on SRE-Luc activity, suggesting that ERK1/2 phosphorylation is independent of G尾纬 signaling (Figure聽S3G).5-HT receptor-mediated ERK1/2 signaling is dependent on 尾-arrestinsWe used the single or combined deletion of 尾-arrestin1 and 尾-arrestin2 to evaluate the contribution of these two proteins to the activation of ERK1/2 signaling by the three Gs-coupled 5-HT receptors. We found that 5-HT4R-, 5-HT6R-, and 5-HT7AR-mediated SRE-Luc activity was substantially inhibited in cells transfected with siRNAs targeting 尾-arrestin1, 尾-arrestin2, or both (siRNA-mediated knockdown validated by RT-qPCR, Fig.聽4a), suggesting the equivalently critical importance of both 尾-arrestin subtypes in ERK1/2 activation (Fig.聽4b). The vital roles of 尾-arrestins were also directly identified by western blotting using an anti-phospho-ERK1/2 antibody (Fig.聽4c).Fig. 4Activation of ERK1/2 by 5-HT receptors is dependent on 尾-arrestin recruitment. a Validation of the siRNA-mediated knockdown of 尾-arrestin1, 尾-arrestin2, or both was conducted by RT-qPCR 48鈥塰 after transfection. b, c An SRE-Luc assay (b) and western blotting analysis (c) were conducted in cells transfected with siRNAs specific to each 尾-arrestin and stimulated with 1鈥壩糓 5-HT. NC represents the signal from cells transfected with a negative control siRNA. d The intracellular interactions between 尾-arrestin2 and the indicated 5-HT receptors were assessed by a NanoBiT PPI assay. Individual transfection of the receptor and 尾-arrestin2 was defined as the control. For each receptor, the fold change in Luc induction was calculated as the ratio of NanoBiT-Luc activity stimulated with 1鈥壩糓 5-HT to the NanoBiT-Luc signal treated with vehicle. *P鈥?lt;鈥?.05, **P鈥?lt;鈥?.01, and ***P鈥?lt;鈥?.001 compared with the control. Error bars represent the SEM of three independent experiments performed in triplicateFull size imageFurthermore, the intracellular interactions between 尾-arrestin2 and 5-HT receptors were determined using the NanoBiT technique [47]. We observed an enhancement in the NanoBiT-Luc signal in response to stimulation with 1鈥壩糓 5-HT (Fig.聽4d), indicating that 5-HT4R, 5-HT6R, and 5-HT7AR recruited 尾-arrestins in an agonist-dependent manner. From these results, we concluded that in addition to the Gs signaling pathway, the recruitment of 尾-arrestins and the subsequent signaling cascades are essential for ERK1/2 phosphorylation elicited by the three Gs-coupled 5-HT receptors.C-terminal truncations of 5-HT4R, 5-HT6R, and 5-HT7AR fail to recruit 尾-arrestin and elicit ERK1/2 activationPrevious structural and functional studies have demonstrated that the stimulus-induced phosphorylation of serine and threonine residues located on the C-terminal region of activated GPCRs is a prerequisite for 尾-arrestin recruitment [48], but the C terminus is a dispensable region for G protein signaling. To elucidate the involvement of the C-terminal region of 5-HT4R, 5-HT6R, and 5-HT7AR in 尾-arrestin recruitment and ERK1/2 signaling, we generated several 5-HT receptor mutants with truncated C-termini of various lengths (Fig.聽5a). As anticipated, all the C-terminal truncation variants retained robust Gs signal transduction, except 5-HT6R(1鈥?23) and 5-HT7AR(1鈥?87), which lost functional activity without intracellular helix 8 (Fig.聽5c). Due to this inability to trigger Gs signaling (which is expected to be constitutive), the 5-HT6R(1鈥?23) and 5-HT7AR(1鈥?87) mutants were not further pursued in this study.Fig. 5C-terminal truncations of 5-HT4R, 5-HT6R, and 5-HT7AR dampen their interaction with 尾-arrestin and activation of ERK1/2. a Schematic diagrams of the C-terminal truncation mutants of 5-HT4R, 5-HT6R, and 5-HT7AR. b The interactions between the truncation variants and 尾-arrestin2 were assessed by NanoBiT PPI assays. c To determine if the C-terminal truncation had any impact on Gs signaling, CRE-Luc activity was measured in each truncation mutant. d An SRE-Luc assay was conducted to investigate the effect of the truncations on ERK1/2 activation. Cells were stimulated by 1鈥壩糓 5-HT in all assays. Cells treated with vehicle defined the background signal (data not shown). *P鈥?lt;鈥?.05, **P鈥?lt;鈥?.01, and ***P鈥?lt;鈥?.001 compared with the control. Error bars represent the SEM of three independent experiments performed in triplicateFull size imageThe relative activities of NanoBiT-Luc and SRE-Luc in all the truncation mutants were similarly decreased compared with the full-length receptors, suggesting accordant patterns of 尾-arrestin recruitment and ERK1/2 activation. Among these mutants, 5-HT6R(1鈥?49), 5-HT6R(1鈥?66), and 5-HT7AR(1鈥?11) exhibited a considerably dampened level of ERK1/2 activation and diminished interaction with 尾-arrestin2. In addition, 5-HT4R(1鈥?15), 5-HT4R(1鈥?29), and 5-HT7AR(1鈥?11) completely abolished the receptors鈥?ability to recruit 尾-arrestins and elicit ERK1/2 activation (Fig.聽5b, d). In sum, the variants of 5-HT4R, 5-HT6R, and 5-HT7AR with truncated C-termini failed to recruit 尾-arrestins and mediate ERK1/2 activation even though Gs signaling was preserved, presenting further evidence for the importance of 尾-arrestin in the phosphorylation of ERK1/2.ERK1/2 activation through 5-HT4R, 5-HT6R, and 5-HT7AR is dependent on FynIn addition to Gs and 尾-arrestin signaling, previous studies reported that Fyn, a member of the Src-like tyrosine kinase family, is involved in 5-HT6R-induced activation of ERK1/2 [30]. Since our data in AD293 cells indicated that all three Gs-coupled 5-HT receptors shared similar patterns of ERK1/2 activation as well as the Gs and 尾-arrestin signaling pathways, we wondered if Fyn was also responsible for 5-HT4R- and 5-HT7AR-mediated ERK1/2 activation.We employed an siRNA-mediated knockdown approach targeting Fyn and Src and determined their effects on ERK1/2 activation. Knockdown of Fyn (validated by RT-qPCR, Fig.聽6a) led to an ~50% decrease in ERK1/2 activation mediated by 5-HT6R, in agreement with previous reports. ERK1/2 activation mediated by 5-HT4R and 5-HT7AR was also dampened to a similar extent as that of 5-HT6R (Fig.聽6b). Src had no impact on ERK1/2 signaling, as suppressing its expression by siRNA (validated by RT-qPCR, Fig.聽6a) did not interfere with ERK1/2 signaling mediated by 5-HT4R, 5-HT6R, or 5-HT7AR (Fig.聽6d). We further investigated the role of Fyn in ERK1/2 signaling by treatment with 20鈥壩糓 PP2, a potent inhibitor of Src-family kinases. PP2 led to a substantial decrease in the activation of ERK1/2 mediated by all three 5-HT receptors in cells stimulated with 1鈥壩糓 5-HT (Fig.聽6e, f). Furthermore, overexpression of the SH3 domain of Fyn, the regulatory domain that interacts with 5-HT6R, competed with full-length and functional Fyn for binding sites on 5-HT4R, 5-HT6R, and 5-HT7AR, precluding the activation of ERK1/2 mediated by Fyn (Fig.聽6g).Fig. 6Phosphorylation of ERK1/2 is dependent on Fyn not Src. a, c The siRNA-mediated knockdown of Fyn (a) and Src (c) was validated by RT-qPCR. b, d SRE-Luc activity was measured after siRNA-mediated knockdown of Fyn (b) or Src (d). NC represents the signal from cells transfected with a negative control siRNA. e, f Cells were treated with 20鈥壩糓 PP2, a nonselective inhibitor of Src kinases, including Fyn, to assess the involvement of Fyn in SRE-Luc activity (e) and ERK1/2 phosphorylation (f). The RLU value induced by 1鈥壩糓 5-HT was set as the control. g A plasmid encoding the SH3 domain of Fyn (at the indicated amounts) was transfected to overexpress SH3 in cells. The RLU value induced by 1鈥壩糓 5-HT was set as the control. Cells were stimulated by 1鈥壩糓 5-HT in all SRE-Luc activity assays. Cells treated with vehicle defined the background signal (data not shown). *P鈥?lt;鈥?.05, **P鈥?lt;鈥?.01, and ***P鈥?lt;鈥?.001 compared with the control. Error bars represent the SEM of three independent experiments performed in triplicateFull size imageTaken together, these results showed that Fyn is involved in ERK1/2 activation induced by 5-HT6R, as well as 5-HT4R and 5-HT7AR, supporting consistent signaling profiles for all three 5-HT receptors.DiscussionThe downstream signaling cascades of 5-HT receptors have been extensively studied in the past two decades due to their widespread involvement in various physiological activities, especially in the central nervous system. In this study, we found that the three Gs-coupled 5-HT receptors, namely, 5-HT4R, 5-HT6R, and 5-HT7AR, share similar signaling patterns; the ligand-free receptors remained constitutively active for Gs signaling, whereas the activation of ERK1/2 was ligand-induced [27, 29, 30]. The paradoxical signaling pattern drew our attention because the activation of ERK1/2 by 5-HT4R, 5-HT6R, and 5-HT7AR has been demonstrated to be Gs-dependent [29, 30]. Several intriguing questions remain to be answered: Why does Gs signaling in the absence of an agonist fail to activate ERK1/2? and are any other signaling cascades in response to agonist stimulation required to elicit ERK1/2 signaling? The unveiling of the mechanisms by which ERK1/2 signaling is activated will not only improve our understanding of the complicated downstream signaling cascades of the three Gs-coupled 5-HT receptors but also allow us to apply this knowledge to other GPCRs and facilitate targeted drug development.All the experiments in this study were conducted in AD293 cells heterogeneously expressing the three Gs-coupled 5-HT receptors. The signaling activation of Gs and ERK1/2 was determined using CRE-Luc and SRE-Luc, respectively. After screening various G proteins, 尾-arrestins, Src, and Fyn, we revealed that Gs, 尾-arrestin1/2, and Fyn are involved in the activation of ERK1/2 mediated by 5-HT4R, 5-HT6R, and 5-HT7AR.It is not surprising that Gs and Fyn signaling are implicated in ERK1/2 activation by 5-HT4R, 5-HT6R, and 5-HT7AR; the contribution of Gs signaling has been reported previously, and Fyn was found to directly interact with 5-HT6R to facilitate the activation of ERK1/2 [29, 30]. In addition, 5-HT4R was previously found to elicit substantially less ERK1/2 phosphorylation after inhibition of Src-family kinases with PP2 [31].The surprising result is that ERK1/2 activation by these three 5-HT receptors requires the cooperative action of Gs, Fyn, and 尾-arrestins. Our finding that both 尾-arrestins are involved in ERK1/2 signaling mediated by the three Gs-coupled 5-HT receptors was entirely novel, as the literature did not previously report such a finding. In fact, 尾-arrestin was reported to negatively regulate ERK1/2 activation [49], whereas we found that suppression of either 尾-arrestin1 or 尾-arrestin2 resulted in a marked decrease in ERK1/2 phosphorylation. Moreover, C-terminal truncations of the 5-HT receptors considerably dampened or even completely abolished ERK1/2 signaling. This finding was contrary to our prediction that a C-terminal truncation would rescue the inhibition of ERK1/2 activation caused by 尾-arrestin-mediated 5-HT receptor internalizations.Entirely opposing signaling patterns mediated by the same GPCRs most certainly are attributed to the complexity and intricacy of cell signaling pathways. For more than a decade, the two prototypical GPCRs, 尾2AR and AT1AR, were deemed to modulate a G protein-independent but 尾-arrestin-dependent mode of ERK1/2 activation [17, 18]. Challenging this belief, a recent study revealed that 尾2AR or AT1AR overexpressed in HEK293 cells completely failed to activate ERK1/2 when G proteins were depleted by CRISPR-Cas9 technology [19]. G proteins are known for fast and transient activation, whereas 尾-arrestin is known for slow but persistent activation of ERK1/2. Taking all this information together with the data obtained in our study, we speculate that Gs signaling is critical to initiate ERK1/2 activation, and 尾-arrestin is responsible for the amplification and maintenance of ERK1/2 signaling.A concerted mechanism toward ERK1/2 signaling can potentially explain why Gs signaling in the absence of an agonist fails to activate ERK1/2 and why agonist-dependent signaling cascades are required to elicit ERK1/2 signaling. When the 5-HT receptors were ligand-free, they remained in a 鈥淕 protein-biased鈥?conformation modulating Gs signaling (Fig.聽7a). Subtle conformational changes upon agonist binding triggered the recruitment of 尾-arrestin and subsequent signaling, as well as the recruitment of Fyn to the 5-HT receptor. In this manner, the cooperative contributions of Gs, 尾-arrestin, and Fyn signaling can modulate the initiation and maintenance of ERK1/2 signaling (Fig.聽7b).Fig. 7Schematic representation of the downstream signal cascade mediated by 5-HT4R, 5-HT6R, and 5-HT7AR. a In the ligand-free state, 5-HT4R, 5-HT6R, and 5-HT7AR constitutively activate Gs signaling, and CRE-Luc activity can be detected. b When the 5-HT receptors are stimulated by an agonist, 尾-arrestin and Fyn are recruited to the receptor, which elicits ERK1/2 activation in cooperation with Gs signaling. These collective contributions allow the transcription and subsequent detection of SRE-LucFull size imageIn conclusion, we defined a novel mechanism of ERK1/2 activation mediated by the three Gs-coupled 5-HT-receptors, which is dependent on both Gs and 尾-arrestin signaling and the Src-family kinase Fyn. Based on our finding that ERK1/2 activation is ligand-induced, whereas Gs signaling is constitutively activated, this new perspective of 5-HT receptor signaling broadens our understanding of the basic principles of GPCR signal transduction and guides 5-HT receptor-targeted drug development. References1.Ranjan R, Dwivedi H, Baidya M, Kumar M, Shukla AK. Novel structural insights into GPCR-beta-Arrestin interaction and signaling. Trends Cell Biol. 2017;27:851鈥?2.CAS聽 PubMed聽Google Scholar聽 2.Peterson YK, Luttrell LM. The diverse roles of arrestin scaffolds in G protein-coupled receptor signaling. Pharmacol Rev. 2017;69:256鈥?7.CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 3.Dikic I, Blaukat A. Protein tyrosine kinase-mediated pathways in G protein-coupled receptor signaling. Cell Biochem Biophys. 1999;30:369鈥?7.CAS聽 PubMed聽Google Scholar聽 4.Shukla AK. Biasing GPCR signaling from inside. Sci Signal. 2014;7:pe3.PubMed聽Google Scholar聽 5.Leroy D, Missotten M, Waltzinger C, Martin T, Scheer A. G protein-coupled receptor-mediated ERK1/2 phosphorylation: towards a generic sensor of GPCR activation. J Recept Signal Transduct Res. 2007;27:83鈥?7.CAS聽 PubMed聽Google Scholar聽 6.Ahn S, Shenoy SK, Wei H, Lefkowitz RJ. Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J Biol Chem. 2004;279:35518鈥?5.CAS聽 PubMed聽Google Scholar聽 7.Wei H, Ahn S, Shenoy SK, Karnik SS, Hunyady L, Luttrell LM, et al. Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc Natl Acad Sci USA. 2003;100:10782鈥?.CAS聽 PubMed聽Google Scholar聽 8.Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors. 2006;24:21鈥?4.CAS聽 PubMed聽Google Scholar聽 9.Carmona-Rosas G, Alcantara-Hernandez R, Hernandez-Espinosa DA. Dissecting the signaling features of the multi-protein complex GPCR/beta-arrestin/ERK1/2. Eur J Cell Biol. 2018;97:349鈥?8.CAS聽 PubMed聽Google Scholar聽 10.Saini DK, Kalyanaraman V, Chisari M, Gautam N. A family of G protein betagamma subunits translocate reversibly from the plasma membrane to endomembranes on receptor activation. J Biol Chem. 2007;282:24099鈥?08.CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 11.Jordan JD, Carey KD, Stork PJ, Iyengar R. Modulation of rap activity by direct interaction of Galpha(o) with Rap1 GTPase-activating protein. J Biol Chem. 1999;274:21507鈥?0.CAS聽 PubMed聽Google Scholar聽 12.Mochizuki N, Ohba Y, Kiyokawa E, Kurata T, Murakami T, Ozaki T, et al. Activation of the ERK/MAPK pathway by an isoform of rap1GAP associated with G alpha(i). Nature. 1999;400:891鈥?.CAS聽 PubMed聽Google Scholar聽 13.Inglese J, Koch WJ, Touhara K, Lefkowitz RJ. G beta gamma interactions with PH domains and Ras-MAPK signaling pathways. Trends Biochem Sci. 1995;20:151鈥?.CAS聽 PubMed聽Google Scholar聽 14.Garbison KE, Heinz BA, Lajiness ME, Weidner JR, Sittampalam GS. Phospho-ERK assays. In: Sittampalam GS, Coussens NP, Brimacombe K, Grossman A, Arkin M, Auld D, et al., editors. Assay guidance manual. Bethesda, MD; 2004.15.Franco R, Martinez-Pinilla E, Navarro G, Zamarbide M. Potential of GPCRs to modulate MAPK and mTOR pathways in Alzheimer鈥檚 disease. Prog Neurobiol. 2017;149-150:21鈥?8.CAS聽 PubMed聽Google Scholar聽 16.Ahn S, Wei H, Garrison TR, Lefkowitz RJ. Reciprocal regulation of angiotensin receptor-activated extracellular signal-regulated kinases by beta-arrestins 1 and 2. J Biol Chem. 2004;279:7807鈥?1.CAS聽 PubMed聽Google Scholar聽 17.Shenoy SK, Drake MT, Nelson CD, Houtz DA, Xiao K, Madabushi S, et al. beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. J Biol Chem. 2006;281:1261鈥?3.CAS聽 PubMed聽Google Scholar聽 18.Gaborik Z, Jagadeesh G, Zhang M, Spat A, Catt KJ, Hunyady L. The role of a conserved region of the second intracellular loop in AT1 angiotensin receptor activation and signaling. Endocrinology. 2003;144:2220鈥?.CAS聽 PubMed聽Google Scholar聽 19.Grundmann M, Merten N, Malfacini D, Inoue A, Preis P, Simon K, et al. Lack of beta-arrestin signaling in the absence of active G proteins. Nat Commun. 2018;9:341.PubMed聽 PubMed Central聽Google Scholar聽 20.Singh AP, Gupta AK, Pardeshi R, Shukla AK. Aplasia cutis congenita in a newborn: a rare case. J Indian Assoc Pediatr Surg. 2018;23:175鈥?.PubMed聽 PubMed Central聽Google Scholar聽 21.Cattaneo F, Guerra G, Parisi M, De Marinis M, Tafuri D, Cinelli M, et al. Cell-surface receptors transactivation mediated by g protein-coupled receptors. Int J Mol Sci. 2014;15:19700鈥?8.PubMed聽 PubMed Central聽Google Scholar聽 22.Che J, Chan ES, Cronstein BN. Adenosine A2A receptor occupancy stimulates collagen expression by hepatic stellate cells via pathways involving protein kinase A, Src, and extracellular signal-regulated kinases 1/2 signaling cascade or p38 mitogen-activated protein kinase signaling pathway. Mol Pharmacol. 2007;72:1626鈥?6.CAS聽 PubMed聽Google Scholar聽 23.Magalhaes AC, Dunn H, Ferguson SS. Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins. Br J Pharmacol. 2012;165:1717鈥?6.CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 24.Claeysen S, Sebben M, Becamel C, Bockaert J, Dumuis A. Novel brain-specific 5-HT4 receptor splice variants show marked constitutive activity: role of the C-terminal intracellular domain. Mol Pharmacol. 1999;55:910鈥?0.CAS聽 PubMed聽Google Scholar聽 25.Krobert KA, Levy FO. The human 5-HT7 serotonin receptor splice variants: constitutive activity and inverse agonist effects. Br J Pharmacol. 2002;135:1563鈥?1.CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 26.Purohit A, Herrick-Davis K, Teitler M. Creation, expression, and characterization of a constitutively active mutant of the human serotonin 5-HT6 receptor. Synapse. 2003;47:218鈥?4.CAS聽 PubMed聽Google Scholar聽 27.Teitler M, Herrick-Davis K, Purohit A. Constitutive activity of G-protein coupled receptors: emphasis on serotonin receptors. Curr Top Med Chem. 2002;2:529鈥?8.CAS聽 PubMed聽Google Scholar聽 28.Shukla AK, Xiao K, Lefkowitz RJ. Emerging paradigms of beta-arrestin-dependent seven transmembrane receptor signaling. Trends Biochem Sci. 2011;36:457鈥?9.CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 29.Norum JH, Hart K, Levy FO. Ras-dependent ERK activation by the human G(s)-coupled serotonin receptors 5-HT4(b) and5-HT7(a). J Biol Chem. 2003;278:3098鈥?04.CAS聽 PubMed聽Google Scholar聽 30.Yun HM, Kim S, Kim HJ, Kostenis E, Kim JI, Seong JY, et al. The novel cellular mechanism of human 5-HT6 receptor through an interaction with Fyn. J Biol Chem. 2007;282:5496鈥?05.CAS聽 PubMed聽Google Scholar聽 31.Barthet G, Framery B, Gaven F, Pellissier L, Reiter E, Claeysen S, et al. 5-hydroxytryptamine 4 receptor activation of the extracellular signal-regulated kinase pathway depends on Src activation but not on G protein or beta-arrestin signaling. Mol Biol Cell. 2007;18:1979鈥?1.CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 32.Hill CS, Marais R, John S, Wynne J, Dalton S, Treisman R. Functional analysis of a growth factor-responsive transcription factor complex. Cell. 1993;73:395鈥?06.CAS聽 PubMed聽Google Scholar聽 33.Cheng Z, Garvin D, Paguio A, Stecha P, Wood K, Fan F. Luciferase reporter assay system for deciphering GPCR pathways. Curr Chem Genom. 2010;4:84鈥?1.CAS聽Google Scholar聽 34.Chen Y, Xu Z, Wu D, Li J, Song C, Lu W, et al. Luciferase reporter gene assay on human 5-HT receptor: which response element should be chosen? Sci Rep. 2015;5:8060.CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 35.Stratowa C, Himmler A, Czernilofsky AP. Use of a luciferase reporter system for characterizing G-protein-linked receptors. Curr Opin Biotechnol. 1995;6:574鈥?1.CAS聽Google Scholar聽 36.Conway S, Canning SJ, Howell HE, Mowat ES, Barrett P, Drew JE, et al. Characterisation of human melatonin mt(1) and MT(2) receptors by CRE-luciferase reporter assay. Eur J Pharmacol. 2000;390:15鈥?4.CAS聽 PubMed聽Google Scholar聽 37.Nordemann U, Wifling D, Schnell D, Bernhardt G, Stark H, Seifert R, et al. Luciferase reporter gene assay on human, murine and rat histamine H4 receptor orthologs: correlations and discrepancies between distal and proximal readouts. PLoS ONE. 2013;8:e73961.CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 38.Zhao LH, Yin Y, Yang D, Liu B, Hou L, Wang X, et al. Differential requirement of the extracellular domain in activation of class B G protein-coupled receptors. J Biol Chem. 2016;291:15119鈥?0.CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 39.Yin Y, de Waal PW, He Y, Zhao LH, Yang D, Cai X, et al. Rearrangement of a polar core provides a conserved mechanism for constitutive activation of class B G protein-coupled receptors. J Biol Chem. 2017;292:9865鈥?1.CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 40.Baghaei KA. Deorphanization of human olfactory receptors by luciferase and Ca-imaging methods. Methods Mol Biol. 2013;1003:229鈥?8.PubMed聽Google Scholar聽 41.Wu L, Zhang W, Qiu X, Wang C, Liu Y, Wang Z, et al. Identification of alkaloids from Corydalis yanhusuo W. T. Wang as dopamine D(1) receptor antagonists by using CRE-luciferase reporter gene assay. Molecules 2018;23:2585.PubMed Central聽Google Scholar聽 42.Shukla AK, Goto M, Xu X, Nawaoka K, Suwardy J, Ohkubo T, et al. Voltage-controlled magnetic anisotropy in Fe1-xCox/Pd/MgO system. Sci Rep. 2018;8:10362.PubMed聽 PubMed Central聽Google Scholar聽 43.Stoddard EG, Volk RF, Carson JP, Ljungberg CM, Murphree TA, Smith JN, et al. Multifunctional activity-based protein profiling of the developing lung. J Proteome Res. 2018;17:2623鈥?4.PubMed聽 PubMed Central聽Google Scholar聽 44.Stork PJ, Schmitt JM. Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol. 2002;12:258鈥?6.CAS聽 PubMed聽Google Scholar聽 45.Koch WJ, Hawes BE, Inglese J, Luttrell LM, Lefkowitz RJ. Cellular expression of the carboxyl terminus of a G protein-coupled receptor kinase attenuates G beta gamma-mediated signaling. J Biol Chem. 1994;269:6193鈥?.CAS聽 PubMed聽Google Scholar聽 46.Garnovskaya MN, van Biesen T, Hawe B, Casanas Ramos S, Lefkowitz RJ, Raymond JR. Ras-dependent activation of fibroblast mitogen-activated protein kinase by 5-HT1A receptor via a G protein beta gamma-subunit-initiated pathway. Biochemistry. 1996;35:13716鈥?2.CAS聽 PubMed聽Google Scholar聽 47.George J, Singh R, Mahmood Z, Shukla Y. Toxicoproteomics: new paradigms in toxicology research. Toxicol Mech Methods. 2010;20:415鈥?3.CAS聽 PubMed聽Google Scholar聽 48.Kang Y, Zhou XE, Gao X, He Y, Liu W, Ishchenko A, et al. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature. 2015;523:561鈥?.CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 49.Bohn LM, Schmid CL. Serotonin receptor signaling and regulation via beta-arrestins. Crit Rev Biochem Mol Biol. 2010;45:555鈥?6.CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 Download referencesAcknowledgementsThis work was supported in part by the National Natural Science Foundation (31770796 to Yi Jiang), the National Science and Technology Major Project (2018ZX09711002-002-002 to Yi Jiang), the Ministry of Science and Technology of China (XDB08020303 to H. Eric Xu), the K.C. Wong Education Foundation (to Yi JIANG), the Youth Innovation Promotion Association of CAS (to Yi Jiang), and the Outstanding Young Scientist Foundation (CAS, to Yi Jiang). Author contributions PL conducted the experiments and wrote the first draft of the paper; Y-lY, TW, LH, X-xW, MW, and G-gZ performed the experiments; PL, YS, and YJ analyzed the results; HEX and YJ supervised the project and wrote the manuscript, with contributions from all the authors. Author informationAffiliationsVARI-SIMM Center, Center for Structure and Function of Drug Targets, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, ChinaPing Liu,聽Yu-ling Yin,聽Ting Wang,聽Li Hou,聽Xiao-xi Wang,聽Man Wang,聽Guan-guan Zhao,聽Yi Shi,聽H. Eric Xu聽 聽Yi JiangUniversity of Chinese Academy of Sciences, Beijing, 100049, ChinaPing Liu,聽Yu-ling Yin,聽Ting Wang,聽H. Eric Xu聽 聽Yi JiangSchool of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, ChinaTing Wang聽 聽H. Eric XuLaboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI, 49503, USAH. Eric XuAuthorsPing LiuView author publicationsYou can also search for this author in PubMed聽Google ScholarYu-ling YinView author publicationsYou can also search for this author in PubMed聽Google ScholarTing WangView author publicationsYou can also search for this author in PubMed聽Google ScholarLi HouView author publicationsYou can also search for this author in PubMed聽Google ScholarXiao-xi WangView author publicationsYou can also search for this author in PubMed聽Google ScholarMan WangView author publicationsYou can also search for this author in PubMed聽Google ScholarGuan-guan ZhaoView author publicationsYou can also search for this author in PubMed聽Google ScholarYi ShiView author publicationsYou can also search for this author in PubMed聽Google ScholarH. Eric XuView author publicationsYou can also search for this author in PubMed聽Google ScholarYi JiangView author publicationsYou can also search for this author in PubMed聽Google ScholarCorresponding authorsCorrespondence to H. Eric Xu or Yi Jiang.Ethics declarations Competing interests The authors declare no competing interests. Supplementary information